Towards Multimodal BCIs for Access: A **Performance and Usability Comparison** of Individual Modalities

Selina Chalmers¹, Dr. Tom Chau^{2,3}, Erica Floreani^{2,3}

¹Queen's University, Biology and Psychology Specialization, ²PRISM Lab, Bloorview Research Institute, ³University of Toronto, Institute of Biomedical Engineering

Background

Cerebral Palsy is a group of conditions that affect movement and posture. There are varying levels of impairment, some requiring access technologies¹:

We want to develop a new hybrid brain computer interface that uses these signals from the body

Objective

To compare the usability of EOG, EMG, and EEG control modalities in adult and youth populations, measured by effectiveness, efficiency, and user satisfaction.

Methods & Analysis

1. Testing Sessions and Data Collection

- Population:
- 16 adult (29.8 +/-5.3 years old) and 9 pediatric (10.8 +/- 3 years old) participants
- Neurotypical

- EMG, EOG, and EEG data collected from each
- participant.
- Usability questionnaire
- 2. Machine Learning and Statistical Analysis

Usability questionnaire was compiled and compared across modalities using repeated measures ANOVA

- Machine Learning Pipeline Offline Accuracy
 - Accuracy

2x video game testing sessions

Online Simulation

Comparing the strengths and limitations of individual modalities shows the need for hybrid technologies to improve accessibility and communication for people with cerebral palsy.

Holland Bloorview Kids Rehabilitation Hospital

Questionnaire Analysis – User Satisfaction

confident using this modality to control the system in my daily life.

Figure 1. Confidence (Peds): Children had the most confidence with EMG, while MI and EOG resulted in the least (F(2, 12) =12.60, p = .001).

Figure 3. Effort (Peds): Children felt MI and EOG required the most effort, whereas EMG required less effort (F(2, 12) = 5.36, p = .022).

Online Performance Analysis

Figure 5. Online Accuracy (Peds): Children showed the highest performance with EMG F(2, 30) = 27.31, p < .001.

Figure 7. Online Accuracy Per Block (Peds): Shows a learning curve for EOG and indicated high EMG performance.

Conclusions & Relevance

use

Adults did not struggle with EOG as children did. Highest rated modality was EMG - MI was rated the lowest.

Relevance to Holland Bloorview:

These findings show the need of personalized solutions - the need for inclusive, hybrid technologies to give children with cerebral palsy new ways to connect and communicate.

References 1. Tai, K., Blain, S. & Chau, T. A Review of Emerging Access Technologies for Individuals With Severe Motor Impairments. Assistive Technology 20, 204–221 (2008).

Results

(Strongly Agree)

(Lots)

Figure 2. Confidence (Adults): Adults had high confidence with both EMG and EOG, while MI had lower confidence (F(2, 30) = 5.16, p = .012).

(Strongly Agree)

[Adults] I would feel confident using this modality to control the system in my daily life.

[Adults]How much effort did it take for you to control the system?

(Not much)

(Strongly Disagree)

Figure 4. Effort (Adults): Adults felt MI required the most effort overall, with EMG and EOG both requiring less effort (F(2, 30) = 6.38, p = .005)

Figure 6. Online Accuracy (Adults): Adults showed almost equally high performance with EMG and EOG F(2, 14) = 20.28, p < .001.

Figure 8. Online Accuracy Per Block (Adults): Shows a learning curve for EOG and low MI performance.

Analysis revealed age- and modality-specific differences.

Children found both EOG and MI the most challenging to

