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changes in gait patterns during walking.

« HMM - moderate-high responsiveness for
all sensor locations and gait symmetry levels.

 Lower leg sensor location - highest
responsiveness across all algorithms.
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v" ML algorithms trained on inertial sensor data can be
responsive to changes in stance time symmetry.

Next steps: 2 I
1 Assess responsiveness of algorithms to changes 0 .

Hidden Markov model (HMM), self-organizing map (SOM), and dynamic time
warping (DTW) were implemented to detect changes in stance time symmetry
from baseline.

in other gait parameters (ex. step length).
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