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• One in 50 children live with autism spectrum disorder (ASD) yet wait-times for 
diagnosis is over 1-3 years

• Magnetic resonance imaging (MRI) can detect differences in brain structure, 
connections and activity in children with ASD ages 2-5 compared to typically 
developing (TD) children

• Machine learning models (i.e. XGBoost) can analyze images (i.e. MRI) and 
identify patterns from complex data to make informed predictions 

• Few studies have developed models to predict ASD in children ages 2-5 using MRI
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METHODOLOGY: Training an XGBoost Algorithm to Classify MRI Brain Scans
A. Steps to Developing Algorithm 

B. How XGBoost Algorithm Works  

RESEARCH QUESTION 

How effectively can machine learning models (i.e. 
XGBoost) classify ASD in children ages 2-5 using 
MRI brain scans?

• Autism spectrum disorder (ASD) is a heterogeneous, neurodevelopmental 
condition that impact communication, social abilities and behaviours

Early differences in 
brain structure in ASD 
may be informative 
markers for guiding 
diagnosis but alone 
are not sufficient

XGBOOST RESULTS

DISCUSSION

• Potential: Highlights utility of developing age-
specific machine learning models for  ASD on 
children ages 2-5. Early MRI scans may 
overcome the complexity heterogeneity in ASD. 

• Relevance: Guide diagnosis, reduce wait-
times for assessment and access to services for 
young children with ASD 

• Limitations: Few subjects, need to assess 
generalizability 

•  
• Next Steps: (A) Evaluate model performance 

in distinguishing anxiety, OCD and ADHD. (B) 
Compare performance with convolutional 
neural network 

75.2% accuracy 
in predicting ASD among 

children ages 2-5

96% sensitivity 
in classifying ASD using 

340 brain features (i.e. 
volume, thickness, area)    
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Fig 1. Area Under the Curve (AUC)  

Fig 2. Confusion Matrix Fig 3. Key Brain Features based on SHAP Values 
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