Towards a Digitally-Made Transradial Prosthetic Socket
Calvin Ngan, Harry Sivasambu, Elaine Ouellette, Neil Ready, Kerri Kelland, Sandra Ramdial, Jan Andrysek

Background

Transradial Prosthetic Socket
- Transradial = below-elbow
- Prosthesis = restore functions of missing limb
- Socket = arguably the **most important part** of the limb prosthesis = human-machine interface

Socket Fabrication: Conventional vs Digital

<table>
<thead>
<tr>
<th>Shape Capture</th>
<th>Rectification</th>
<th>Fabrication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture the geometry of the residual limb with plaster bandages</td>
<td>Manually modify the positive model & design the socket</td>
<td>Produce a socket by laminating over the positive model</td>
</tr>
</tbody>
</table>

Shape Capture
- Scan client’s residual limb with a handheld optical scanner

Rectification
- Create a 3D socket model using Computer-Aided Design software

Fabrication
- Use 3D printer to create prosthetic socket from digital design

Transradial Prosthetic Socket
- Shape Capture
- Rectification
- Fabrication

Scanning
- Plinth
- Black drape & floor mat

Set-up
- Plinth = height adjustability for ease of scanning
- Black drape & floor mat = ↓ noise & ↑ contrast between background and residual limb
- Shoulder support = ↓ patient fatigue & ↑ stability

Client’s Positioning
- Lay comfortably on the plinth
- Roll sleeve up to shoulder level
- Rest limb onto the support
- Remain still for the duration of the scan

Digital Rectification
- The most challenging aspect for prosthetists as it is a drastic change from conventional practice
- To help reduce the learning curve, we have begun developing a rectification protocol as a starting point for designing transradial sockets
- We have been working on automation tools that aim to simplify the rectification process.

3D Printing
- No material standards for diagnostic or definitive sockets
- Heat moldability of FDM printed parts is less than desired
- Transparency is insufficient to visually assess fit

Rationale

The implementation of digital workflows in prosthetic and orthotic (P&O) care is increasing throughout healthcare. However, there exist challenges and technical barriers hindering the full adoption of digital workflows, especially for upper limb population. A team of researchers and certified prosthetists has been investigating the feasibility to implement digital and additive technologies as routine practice for transradial prosthetic management – from digital shape capture to final fabrication.

Things we have learned so far

Conventional
- Well-established
- Reduce plaster & material waste
- Collect and store digital data

Digital
- No established guideline/recommendations for scanning, rectification, and fabrication procedure

CONS
- Labour-intensive
- Waste of material
- No quantifiable data
- Outcomes are highly dependent on the skills and experience of prosthetist

NEXT STEPS
- Fit 3D printed sockets on volunteer clients
- Train O&P staff to use digital technology
- Support digital rectification through research effort
- Expand application of digital technology to other populations such as lower limb populations and orthosis users
- Evaluate 3D printing materials

Other Applications
- Eliminate existing plaster models and repurpose storage spaces by scanning and storing models digitally