Reducing barriers to communication technologies: ## New performance metrics and training methods for ## brain-computer interfaces Nicolas Ivanov^{1,2} and Tom Chau^{1,2} ¹Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON ²Institute of Biomedical Engineering, University of Toronto, Toronto, ON #### What is a brain-computer interface (BCI)? Intent/Selection Signal Predicted Measurement Mental task processing & intent/selection (EEG) classification to control application Feedback User Computer A BCI is a technology designed to enable users to control computers using only brain signal patterns associated with different mental tasks ### BCI inefficiency: How do you think? Unfortunately, current BCIs do not work for a large proportion of potential users^{1,2} Why? Everyone's brain and mental task approach is different, some need guided training and practice to find an approach that works^{1,3} However, current BCI-user training approaches often fail to effectively promote skill learning^{1,3,4} Every BCI user is unique and most need to learn how to perform mental tasks to control BCIs ### Improving BCI-skill assessment and training feedback Skill learning is **goal oriented**, which requires: 1. An accurate assessment of task performance and how performance changes during training Newly proposed metrics based on difference between tasks and individual task consistency predictive of BCI performance (left)⁵ and correlated with changes in BCI performance (right)⁶ 2. Feedback that clearly communicates current, and changes in, performance level Feedback interface illustrating inter-task differences (distance between circles) and task consistency (size of circle)⁵ Users better able to correctly infer changes in performance using this feedback compared to standard BCI feedback⁵ #### Conclusions & Future work BCI training can be improved using metrics and feedback that enables exploration and experimentation with different mental tasks Future work: Training without prescribed tasks to increase user freedom 1Lotte F, Larrue F, Mühl C. Flaws in current human training protocols for spontaneous brain-computer interfaces: lessons learned from instructional design. Frontiers in human neuroscience. 2013 Sep 17;7:568. ⁴Roc A, Pillette L, Mladenovic J, Benaroch C, N'Kaoua B, Jeunet C, Lotte F. A review of user training methods in brain computer interfaces based on mental tasks. Journal of Neural Engineering. 2020 Nov 12. ²Lotte F, Jeunet C. Defining and quantifying users' mental imagery-based BCI skills: a first step. Journal of neural engineering. 2018 Jun 19;15(4):046030. 3 Jeunet C, Jahanpour E, Lotte F. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study. Journal of neural engineering. 2016 flvanov N, Chau T. Adapting Riemannian geometry-based user-performance metrics for sensorimotor rhythm brain-computer interface-user training. Submitted to IEEE May 11;13(3):036024. ⁵Ivanov N, Chau T. Development of a feedback interface to guide skill acquisition for SMR-BCI control. Submitted to Journal of Neural Engineering. 2021 Sept. Transactions on Neural Systems and Rehabilitation Engineering. 2021 Sept.