A wearable system to assess walking symmetry in individuals with lower limb impairments

Alexandra Colville-Reeves^{1,2}, Aliaa Gouda^{1,3}, Gabriel Ng^{1,3}, Harry Sivasambu¹ and Jan Andrysek^{1,3}

- 1. Holland Bloorview Research Institute,
- 2. Integrated Biomedical Engineering & Health Sciences, McMaster University,
- 3. Institute of Biomedical Engineering, University of Toronto

BACKGROUND

- Individuals with lower limb impairments often experience gait asymmetry
- Quantifying asymmetry is important to guide the focus of rehabilitation

OBJECTIVE

Develop a wearable system that can:

1. Accurately identify gait events

Heel Strike =

ascending

after

First minimum

2. Quantify asymmetry in walking

[1]

Toe Off=

Maximum

before

Last

3. Provide real-time data output and biofeedback through an android app

METHODS

1. Developed an algorithm to detect Heel Strike and Toe Off Events

2. Two sensors attached to the shank interface with the app to

3. Angular velocity data along z axis compared to data from 3D motion capture system

A wearable inertial sensor system can be used to analyze walking patterns in real time and provide feedback to improve walking patterns in individuals with lower limb impairments

RESULTS 200 Angular Velocity (rad/s) Heel Strike detected by wearable system Toe Off detected by 3D motion -100

- Mean timing error for Heel Strikes was 0.5% ± 1.1 and 1.5% ±0.6 for Toe Off detections when tested on offline data from individuals with lower-limb amputations
- Algorithm used these events to calculate stance time, swing time, stance time symmetry and cadence values

NEXT STEPS

- Continue testing with user receiving biofeedback
- · Continue testing with individuals with lower limb amputations

CONCLUSION & RELEVANCE TO BLOORVIEW FAMILIES

- Reliable detection of gait events allows this system to perform real time analysis of gait symmetry in individuals with lower limb impairments
- Providing biofeedback guides the rehabilitation focus
- Additional advantages:

Continue gait training and rehabilitation outside of the hospital

User-friendly and portable system promotes consistent usage

REFERENCES

[1] B. Mariani, S. Rochat, C. J. Büla and K. Aminian, "Heel and Toe Clearance Estimation for Gait Analysis Using Wireless Inertial Sensors," in IEEE Transactions on Biomedical Engineering, vol. 59, no. 11, pp. 3162-3168, Nov. 2012, doi: 10.1109/TBME.2012.2216263.